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Abstract. We have investigated numerically the quantum evolution of a δ-like wave-packet in a quenched
disordered medium described by a tight-binding Hamiltonian with long-range hopping (band random
matrix approach). We have obtained clean data for the scaling properties in time and in the bandwidth
b of the packet width M̃ and its fluctuations ∆M̃ with respect to disorder realizations. We confirm that
the fluctuations of the packet width in the steady-state show an anomalous scaling ∆M̃/M̃ ∼ b−δ with
δ = 0.75± 0.03 . This can be related to the presence of non-Gaussian tails in the distribution of M̃ . Finally,
we have analysed the steady state probability profile and we have found 1/b corrections with respect to
the theoretical formula derived by Zhirov in the b→∞ limit, except at the origin, where the corrections
are O(1/

√
b).

PACS. 05.45.Mt Semiclassical chaos (“quantum chaos”) – 71.23.An Theories and models; localized states
– 72.15.Rn Localization effects (Anderson or weak localization)

1 Introduction

Band random matrices (BRM) represent an effective
model for both 1D disordered systems with long-range
hopping and quasi-1D wires [1]. The bandwidth b plays
the role of the range of the interaction in the first case, the
one of the square root of the number of independent con-
duction channels in the second. Up to now, studies have
been mostly devoted to the analysis of the stationary solu-
tions of the Schrödinger equation and to the correspond-
ing spectral properties of BRM’s [2]. Much less is known
about the solutions of the time dependent Schrödinger
equation, a topic on which only a few studies have been
performed [3,4]. The partial analogy of this latter prob-
lem with the “dynamical localization” phenomenon in the
kicked rotor [5] suggests that an initial delta-like packet
spreads diffusively and eventually saturates to a localized
state. The width of this asymptotic packet for BRM’s is
of the order of b2 lattice sites, i.e. the same order as the
localization length of all the eigenfunctions [2].

The theoretically predicted scaling laws for the mean
square displacement M̃ were tested numerically and a
comparison of the asymptotic form of the wave-packet
with a theoretical formula [6], derived for the 1D Ander-
son model, was attempted [4]. More recently some new
theoretical results appeared which give a formula for the
time asymptotic packet in the BRM model in the large
b limit [7]. Therefore, it became important to check nu-
merically this formula and to both investigate how the
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packet reaches its time asymptotic shape and measure
the size of finite b corrections. For what the time evolu-
tion is concerned some phenomenological expressions were
suggested in reference [4], based on a power-law conver-
gence of the mean square displacement to its steady state
value. However, the presence of large statistical fluctua-
tions prevented the authors of reference [4] from assessing
whether the time asymptotic scaling is ruled by power
law corrections or by the logarithmic corrections to the
t−1 dependence suggested by rigorous results obtained for
the 1D Anderson model [9]. The fluctuations ∆M̃ of the
width of the asymptotic wave-packet with the realization
of the disorder constitute an even more controversial issue,
since not even the scaling behaviour is clearly understood.
Some evidence of an anomalous behaviour was presented
in two previous studies of the same problem [3,4] and in
the kicked rotor [8]. In all cases the numerics was too poor
to make a convincing statement about the value of the
anomalous exponent.

The bottleneck of the previous simulations was the
slowness of the integration scheme, a 4-th order Runge-
Kutta with a small time step to obtain a good conserva-
tion of probability over a long time span. This low effi-
ciency prevented from reaching sufficiently large values of
b and from considering a large enough number of realiza-
tions of the BRM’s. We have instead implemented a 2-nd
order Cayley algorithm, which, being unitary, exactly
conserves probability, although the one-step integration
error is larger than the one of the Runge-Kutta scheme
(a situation similar to those of symplectic algorithms in
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classical Hamiltonian dynamics). This has allowed us to
more than double the maximum bandwidth (from b = 12
to b = 30) and to increase the statistics by a factor four
(in the worst case).

As a result, we have been able to complete an accurate
analysis of the time evolution of the mean square displace-
ment, finding that there is no need to invoke effective for-
mulas with a power-law time dependence even at relatively
short times. We have found a clean evidence of an anoma-
lous scaling of the relative fluctuations of the packet width,
which behave as ∆M̃/M̃ ∼ b−δ with δ = 0.75 ± 0.03. In
order to confirm this anomaly, we have investigated the
statistics of the packet width at a specific time in the lo-
calization regime. The probability distributions at various
b values, when appropriately rescaled, superpose, and the
resulting universal (b independent) curve is definitely dif-
ferent from a Gaussian with an exponential tail at large M̃
values. Finally, we have compared our results with the the-
oretical formula for the asymptotic wave-packet [7] find-
ing a convincing agreement. The finite b corrections to the
b→∞ Zhirov expression are of order (1/b).

2 Model and numerical technique

We have considered the time-dependent Schrödinger
equation

i
∂ψi
∂t

=
i+b∑
j=i−b

Hijψj (1)

where ψi is the probability amplitude at site i and the
tight-binding Hamiltonian Hij is a real symmetric band
random matrix. The band structure of the Hamiltonian is
determined by the condition

Hij = 0 if |i− j| > b,

the parameter b setting the band-width; the matrix ele-
ments inside the band are independent Gaussian random
variables with

〈Hij〉d = 0 and 〈(Hij)
2〉d = 1 + δij

where the symbol 〈·〉d stands for the average over different
realizations of the disorder. In the present work we have
considered the evolution of an ‘electron’ initially localized
at the centre (identified with the site i = 0) of an infi-
nite lattice. To this aim we have analysed the solution of
equation (1) corresponding to the initial condition

ψi (t = 0) = δi0.

Since the wave-packet evolves in a supposedly infinite
lattice, it is necessary to avoid any spurious boundary ef-
fect due to the inevitably finite size of the vectors used in
the numerical computations. This goal has been achieved
by resorting to a self-expanding lattice, i.e. a lattice whose
size is progressively enlarged according to the develop-
ment of the wave-function. At each integration step, our

program checks the probability that the electron is in the
leftmost and rightmost b sites, adding 10b new sites when-
ever the amplitude |ψi| is larger than ε = 10−3 in at least
one of the 2b outermost sites. We have separately verified
that ε is small enough not to significantly affect the com-
putation of the probability distribution. For instance, by
lowering ε by an order of magnitude, the mean squared
displacement (computed over the same disorder realiza-
tions) changes only by a few percent. Since this systematic
error is not larger than the uncertainty due to statistical
fluctuations, it is not convenient to reduce the cut-off as
it would turn out in a slower code with a consequent re-
duction of the statistics.

The Schrödinger equation (1) was integrated by ap-
proximating the evolution operator exp (−iHt) with the
Cayley form

exp (−iHδt) ' 1− iHδt/2
1 + iHδt/2

, (2)

which implies that the values of the wave-function at two
successive time-steps are related by(

1 +
1
2

iHδt
)
ψ(t+ δt) =

(
1− 1

2
iHδt

)
ψ(t). (3)

Solving the band diagonal system of equations (3) allows
one to determine ψ(t + δt) once ψ(t) is known. Cayley’s
algorithm is a standard tool for the computation of the
solutions of the Schrödinger equation (see for instance
Ref. [10]); to the best of our knowledge, this is the first ap-
plication to the specific field of random Hamiltonians with
long-range hopping. Cayley’s form (2) for the evolution
operator has two relevant features: it is second-order accu-
rate in time and unitary; in addition, the corresponding in-
tegration scheme (3) is stable. Stability is essential in order
to study the long time evolution of the wave-packet; as for
unitarity, it ensures the conservation of probability and,
together with second-order accuracy in time, allows one to
choose time steps δt two or three order of magnitude big-
ger than those used in Runge-Kutta integration schemes.
Indeed, we could make use of a time step δt ∼ 10−1, to be
compared with the time step δt ∼ 10−4−10−3 used for the
same problem in references [3,4]. To ascertain how large
a δt could be used, we have compared the solutions ob-
tained through Cayley’s algorithm at various δt with the
exact solution of the Schrödinger equation (1), computed
by diagonalizing the Hamiltonian (to avoid boundary ef-
fects due to the finite size of the diagonalized matrices,
we have considered sufficiently short evolution times). By
this way we came to the somewhat surprising conclusion
that the validity range of the approximate equality (2) ex-
tended up to time steps as big as δt ∼ 1/

√
b (the scaling

of δt with the band-width b was necessary to compensate
the opposite scaling of the energy eigenvalues with

√
b). To

check this conclusion, we have computed the mean squared
displacement in the localized regime for several values of
δt in the range 10−2/

√
b − 1/

√
b, finding differences of a

few percent, not larger than the statistical fluctuations.
This can depend on the fact that the long time evolu-

tion of the wave-packet seems to be led by the eigenstates
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at the band centre. Indeed, in the energy representation,
the exact evolution operator and the Cayley form can be
written as

exp (−iHδt) =
∑
n

|n〉e−iEnδt〈n|

1− iHδt/2
1 + iHδt/2

=
∑
n

|n〉e−iφn(δt)〈n| ,

with

φn(δt) = 2 arctan (Enδt/2) ,

where |n〉 is the eigenvector corresponding to the energy
En. These equations show that, for increasing δt, the ap-
proximate equality (2) holds true only in the subspace
spanned by the eigenvectors corresponding to the band
centre, while at the band edge, where the eigenvalues |En|
tend to

√
b, the coefficients exp (−iEnδt) and exp (−iφnδt)

become quickly different. Therefore, the eigenstates at the
band edges appear to play a minor role in the time evo-
lution. This is probably due to the shorter localization
length of such states compared with those in the centre:
in fact, for the mean square displacement, all eigenstates
are weighted with their localization length [11].

3 Results

To investigate the time evolution of the wave-packet, we
have computed the mean square displacement

M̃(b, t) = 〈u(t)〉d ≡
〈 ∞∑
j=−∞

j2|ψj(t)|2
〉
d

. (4)

Previous studies of this problem strongly suggest that
M̃ satisfies the scaling relation

M̃(b, t) = b4M(τ = t/b3/2), (5)

for large enough values of the bandwidth b. Nevertheless,
in reference [4], where the most detailed numerical inves-
tigation has been carried out, it was not possible to obtain
a clear verification of the scaling law (5) due to the poor
statistics and the small values of b.

The faster integration algorithm described in the pre-
vious section has allowed us both to average over more
realizations (400 in the worst case), i.e. to reduce statis-
tical fluctuations, and to reach larger values of b (namely,
b = 30 instead of b = 12 as in Ref. [4]). The results re-
ported in Figure 1 for several values of b are clean enough
to show a convincing convergence from above to a limit
shape. In other words, there is no possibility to inter-
pret the deviations as a signature of a different scaling
behaviour for M̃ .

In order to perform a more quantitative analysis, we
have proceeded in the following way: M(τ, b)1 has been

1 We have added the variable b to underline the residual but
asymptotically irrelevant dependence on the band-with.
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Fig. 1. Rescaled mean squared displacement M vs. rescaled
time τ = t/b3/2. From top to bottom: b = 8, 12, 16, 22, 26, 30
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Fig. 2. Convergence towards zero of the finite band correction
(7). The slope is 0.95 thus close to −1.

averaged over the time interval 20 < τ < 30 to obtain the
more statistically reliable quantity 〈M〉t(b). By assuming
a dependence of the type

〈M〉t(b) = M∞(1 + ab−α), (6)

we have fitted the three parameters M∞, a and α, finding
that the convergence rate α is very close to 1 (0.95), i.e.
that the finite-band corrections are of the order 1/b. The
fitted value of M∞ is 0.61. The results for the finite-band
correction

δM = M∞ − 〈M〉t(b) (7)

are plotted in Figure 2.
The good quality of our numerical data suggests also

the possibility to compare the temporal behaviour with
the available theoretical formulas. In particular, it has
been argued in reference [9] that the existence of the so-
called Mott states should imply a (ln t)/t convergence of
M to its asymptotic value. Therefore, we propose the fol-
lowing expression

M(τ, b) = M(∞, b)
(

1− 1 +A ln(1 + τ/tD)
1 + τ/tD

)
, (8)

which is the simplest formula that we have found able to
reproduce also the initially linear (i.e. diffusive) regime.
For each value of b, the best fit is so close to the nu-
merical data of Figure 1 to be almost indistinguishable
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from them (this is why we do not report the fits on the
same figure). The meaningfulness of the above expression
is further strengthened by the stability of the three free pa-
rameters M(∞, b), A and tD, which allows the calculation
of a b-independent diffusion constant (see below). From
the values of M(∞, b), we can extrapolate the asymptotic
value M(∞,∞) in exactly the same way as we have done
for 〈M〉t(b), finding once more a (1/b)-convergence to a
value around 0.70. This result is to be compared with the
theoretical prediction M(∞,∞) ≈ 0.668 [13]. The devi-
ation of about 0.03 can be attributed to the accuracy of
the integration algorithm.

Another important parameter that can be extracted
from formula (8) is the diffusion coefficient. Indeed, by
expanding equation (8) for small τ , we find

M(τ, b)
τ

=
M(∞, b)

tD
(1−A) = D. (9)

The diffusion constant D turns out to be close to 0.50
for all values of b and, what is more important, close to
the value that we obtain from a quadratic fit of the ini-
tial growth rate of the packet. This is a very encouraging
result, since it confirms the correctness of formula (8) for
both the diffusive and the localized regimes. Let us notice
that the value D ' 0.50 is somewhat smaller than the one
reported in [4] (D ' 0.83). Taking into account statisti-
cal fluctuations and systematic deviations, we find that
D = 0.50± 0.05.

In past papers, a phenomenological expression involv-
ing a power-law convergence to the asymptotic value of
the mean squared displacement has been proposed [4,12],
arguing that it should provide an effective description of
both the diffusive and localized regime

M(τ, b) = M(∞, b)
(

1− 1

(1 + τ/tD)β

)
· (10)

The success of expression (8) shows that there is no need
to introduce anomalous power laws to reproduce the nu-
merical findings. However, for the sake of completeness,
we have fitted our numerical data also with equation (10),
finding an equally good agreement. Therefore, on the basis
of the quality of the fit we cannot conclude which of the
two expressions is better; nevertheless, it is worth recalling
that the former one has the correct asymptotic behaviour
and, moreover, the fitted parameters are more stable.

A much more controversial situation exists about the
fluctuations of the packet width. Let us introduce the
r.m.s. deviation

∆M̃ (b, t) ≡
√
〈u(t)2〉d − 〈u(t)〉2d . (11)

In fact, it has not yet been clarified how the above variable
scales in the large-b limit. In particular, the correct value
of the scaling exponent ν in the relation

∆M̃ (b, t) = bν∆M (τ = t/b3/2, b) (12)

is still unknown; this is why the b dependence in ∆M is
explicitly maintained. A scaling like b4 would imply that
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τ
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Fig. 3. Rescaled fluctuations of the mean squared displace-
ment ∆M in formula (12) with ν = 3 vs. rescaled time
τ = t/b3/2. The values of b increase from bottom to top
b = 8, 12, 22, 26, 30. There is a clear tendency to grow for in-
creasing b values.

the packet-width is not a self-averaging quantity, since the
relative size of the fluctuations would not go to zero for
increasing b. Conversely, an exponent ν = 3 corresponds
both to self-averaging and “normal” behaviour. In fact,
the number Nc of independent channels (lattice sites) ac-
tively contributing to the localized region (i.e. the local-
ization length) is of the order b2. If we assume that all such
contributions to the second moment M̃ are independent of
one another, then we are led to conclude that the relative
fluctuations should decrease as 1/

√
Nc = 1/b, thus yield-

ing an absolute growth as b3. Since previous studies [4]
have suggested a small anomaly, i.e. ν slightly larger than
3, we have chosen to report the behaviour of ∆M(τ, b)
for ν = 3. The data shown in Figure 3 reveals a drasti-
cally different behaviour from what observed in Figure 1.
First of all, the curves tend to grow for increasing b; more-
over, there is no obvious indication of a convergence to
some finite value. Altogether, these features imply that ν
is strictly larger than 3, qualitatively in agreement with
previous simulations.

In order to perform a more quantitative analysis, we
have computed the average of ∆M̃ and rescaled it to the
average of M̃ ,

∆a
M (b) ≡ 〈∆M̃ 〉t

〈M̃〉t
· (13)

(〈·〉t is again to be interpreted as the average over the time
interval 20 < τ < 30). The advantage of this renormaliza-
tion, already adopted in reference [4], is that it reduces
finite-band corrections. The results reported in Figure 4,
reveal a clean power law decay with an exponent δ ≈ 0.75.
This value is slightly larger than the one found in the pre-
vious studies, but follows from a much cleaner numerics.
A more global check of the scaling behaviour can be made
by plotting the rescaled fluctuations

∆g
M (τ) ≡ bδ ∆M̃

M̃
(14)

for the various values of b. The optimal value of δ can
thus be identified as that one yielding the best data
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Fig. 4. Averaged and normalized fluctuations of the mean
squared displacement in formula (13) vs. b (log-log scale). The
line is a fit with a power law b−δ with δ = 0.75. In the inset
we report ∆g

M(τ ) (see Eq. (14) for its definition) for the same
values of b as in Figure 3 and δ = 0.75.

collapse. The curves reported in the inset of Figure 4 have
been obtained for δ = 0.75. It is necessary to modify δ by
at least ±0.03 units in order to see a significant worsen-
ing of the data collapse. Accordingly, the best estimate of
the anomalous exponent is δ = 0.75 ± 0.03, so that the
dependence of ∆M on b in equation (12) is removed for
ν = 4− δ ≈ 3.25.

In order to find further support for this anomalous be-
haviour, we have investigated the probability distribution
P (M) for the second moment at the time τ = 30 (the
longest time we reached for the larger b-values), i.e. when
the wave-function has almost entered the steady-state
regime. The construction of reliable histograms has forced
us to consider smaller values of b. In fact, we have studied
the cases b = 8, b = 12 and b = 22, using 104 realizations
of the disorder in the first two cases and 103 in the last
one. The results are reported in Figure 5, where, following
a method suggested in reference [14], we have conveniently
rescaled the probability distribution P (M). In particular,
defining by Mav the average value of M at τ = 30 and
σ(M) the standard deviation over the ensemble of disor-
der realizations, we have plotted P ′(M ′) = σ(M)P (M)
vs. M ′ = (M −Mav)/σ. After this rescaling, the distri-
butions P ′(M ′), corresponding to the three b values, have
zero average and unit standard deviation. It is remarkable
to notice that all curves nicely overlap indicating a strik-
ing scaling behaviour. A further important feature is the
deviation from a Gaussian behaviour, especially for large
values of M ′, where a clear exponential tail is visible. The
dotted line just above the three curves (corresponding to
the pure exponential exp(−M ′)) has been added to give
an idea of the decay rate which is slightly larger than 1.
The results of this analysis are important in two respects:
i) the exponential tail “explains” the difficulties encoun-
tered in getting rid of statistical fluctuations in the esti-
mate of ∆M ; ii) the deviations from a Gaussian behaviour
provide an independent evidence of the anomalous scaling
behaviour of the fluctuations. It is interesting to remark
that a preliminary quantitative comparison has revealed a
striking identity of the probability P ′(M ′) with the distri-
butions found in reference [14] for such diverse quantities
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Fig. 5. Scaled probability distribution of M ′ = (M −Mav)/σ.
The dotted line has been drawn to guide the eye to the expo-
nential (non-Gaussian) behaviour.
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Fig. 6. Probability profile rescaled using formula (15) for sev-
eral b values vs. x = j/b2, compared with Zhirov’s theoretical
prediction (white line).

as the magnetization in the 2D XY model and the power
consumption in a confined turbulent flow. This close cor-
respondence deserves further investigations.

Finally, we want to compare our results with the the-
oretical predictions for the asymptotic shape of the wave-
packet. In [4] a reasonable agreement was found between
the numerical data and the formula obtained by Gogolin
for strictly one-dimensional systems [6]. Since a theoretical
expression has been derived in the meantime for quasi-
1D systems [7], it is desirable to compare our data also
with this expression. In Figure 6 we present the disorder-
averaged probability profiles 〈|ψj(t)|2〉d = f̃(j, t) for large
times, rescaled under the assumption [3]

fs(x) = b2f̃(j,∞); x = j/b2, (15)

and compare them with Zhirov’s theoretical formula,
which is denoted by the white line. No appreciable devia-
tion is noticeable except for the extreme part of the tails,
where it is reasonable to expect numerical errors due to
boundary effects.

The good overlap is partly due to the (unavoidable)
choice of logarithmic scales in Figure 6. However, if we
zoom the region around the maximum (with the excep-
tion of the zero channel), one can see in Figure 7 a slow
tendency of the various curves to grow towards the theo-
retical expectation. This is consistent with the behaviour
of M reported in Figure 1, which reveals a convergence
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Fig. 7. Zoom of the central region of Figure 6. Zhirov’s formula
is now the black line.

from above for the mean squared displacement. It is in-
teresting to notice that all such deviations are mainly due
to the finiteness of b while the lack of asymptoticity in t
appears to be much less relevant.

Finally, we consider separately the zero channel, i.e.
the return probability to the origin fs(0). In Figure 8 we
plot this quantity versus τ for different values of b. In all
cases, a quite fast convergence, as compared with the be-
haviour of the packet-width, to the asymptotic value is
clearly seen. In practice, as soon as τ is about 1, the av-
erage value of fs(0) reaches the asymptotic value. It is
instructive to compare our numerical findings with the
asymptotic (in time and b) analytic expression fs(0) = 6.
By fitting the dependence of the time average of fs (in
the interval 1 < τ < 30) on b as in Eq. (6)), we find that
the asymptotic value is about 5.7 and that the conver-
gence rate is 1/

√
b. The numerical value is in a reasonable

agreement with the theoretical one, considering that it
is the result of an extrapolation of data already affected
by errors of the order of a few percent. The non-trivial
part of the result is the rate of convergence of this prob-
ability, which is definitely slower than the 1/b behaviour
displayed by the second (and other low order) moments.
The behaviour of the return probability, however, is in
agreement with the theoretical predictions made in [7],
where the finite b deviations from the asymptotic steady-
state probability distribution were estimated to be of order
O(1/

√
b) in the |x| ≤ 1/b neighbourhood of the origin.

The b-dependence of the return probability is further
illustrated in Figure 9, where we plot the deviation δf =
6−fs(0) from the asymptotic value limb→∞ fs(0) = 6 as a
function of b in bilogarithmic scale. The displayed numer-
ical values were obtained by averaging the return proba-
bility both over disorder realizations and the time inter-
val 20 < τ < 30; the data were then fitted with two ex-
pressions, exhibiting deviations from the asymptotic value
fs(0) = 6 of order O(1/b) and O(1/bα) respectively. In the
second case, the exponent α was used as a fitting param-
eter and the best fit value was α = 0.53. As can be seen
from Figure 9, the power law with O(1/

√
b) corrections

fits the data much better than the one with deviations of
order O(1/b).

0 1 10 100
2

3

4

5

6

7

τ

fs(0)

Fig. 8. Return probability to the origin fs(0) vs. τ for several
b values: from bottom to top b = 8, 16, 22, 30.
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Fig. 9. Deviations of the return probability from the asymp-
totic value vs. b (log-log scale). The circles represent numerical
data, the dashed line is a fit with a power law 1/b, the contin-
uous line is a fit with a power law 1/bα, with α = 0.53.

4 Conclusions and perspectives

We have studied the time evolution of an initial δ-like
wave-packet in a 1D disordered lattice with long-range
hopping. The main results of this paper are the follow-
ing. We have confirmed with clean numerics the scaling
law (5) for the mean square displacement M̃ , first pro-
posed and studied in reference [4]. This scaling law is valid
in the large b limit; here we have found that finite b cor-
rections are of the order 1/b. We have proposed formula
(8) for fitting the time evolution of M̃ towards its steady
state value; this formula contains the logarithmic correc-
tions suggested by the existence of Mott states. We con-
firm the presence of an anomaly in the scaling law of the
relative fluctuations ∆M̃/M̃ of the mean square displace-
ment, finding that they vanish for large b as b−0.75. We
have linked this anomaly to the presence of non-Gaussian
fluctuations of the mean square displacement. In fact, the
probability distribution of M̃ displays an exponential tail
for large values of M̃ . The conveniently rescaled probabil-
ity strikingly coincides with the distributions obtained in
reference [14] for such diverse quantities as the magneti-
zation in the 2D XY model and the power consumption
in a confined turbulent flow. The degree of universality of
such distribution deserves further investigations. Finally,
we have compared the numerical results on the steady
state probability profile with the theoretical formula



A. Politi et al.: Time evolution of wave-packets in quasi-1D disordered media 679

proposed by Zhirov for large b, finding a good agreement.
We have computed for the first time finite b corrections,
obtaining O(1/b) deviations for the moments of the proba-
bility profile and O(1/

√
b) corrections for the return prob-

ability to the origin.
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